


118:2 • Michaël Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W. Hasino�, and Frédo Durand

We share the motivation of prior work that seeks to accelerate
“black box” image processing operations, either by using a remote
server, e.g. [Gharbi et al. 2015] or by processing a low-resolution
image and then using the low-resolution output to approximate a
high-resolution equivalent [Chen et al. 2016]. For some operations,
these approaches can achieve large speedups but they su�er from
signi�cant limitations: the underlying image processing operation
must be somewhat scale-invariant (Figure 9), and must be fast to
evaluate at low resolution. In addition, these techniques rely on
the availability of an explicit reference implementation, and there-
fore cannot be used to learn an implicitly-de�ned operation from a
database of human annotated input/output pairs.

Many deep learning architectures have been used for image-to-
image transformations, e.g. [Isola et al. 2016; Liu et al. 2016; Long
et al. 2015; Xu et al. 2015; Yan et al. 2016]. However, most prior
work incur a heavy computational cost that scales linearly with
the size of the input image, usually because of the large number of
stacked convolutions and non-linearities that must be evaluated at
full resolution. This general form allows for �exible models to be
learned, but this expressivity comes at a price: such architectures are
orders of magnitude too slow for real-time view�nder applications,
requiring seconds to process a 1 megapixel image on the best desktop
GPUs—more than 1000� slower than our proposed model (2 ms on
GPU). Our speedup is enabled by speci�cally targeting photographic
transformations, which are often well-approximated with linear
operations in bilateral space [Chen et al. 2016], and accordingly
learning our model in this space.

We present a new network architecture that is capable of learn-
ing a rich variety of photographic image enhancements and can
be rapidly evaluated on high-resolution inputs. We achieve this
through three key strategies: 1) We perform most predictions in a
low-resolution bilateral grid [Chen et al. 2007], where each pixel’s
x ;y coordinates are augmented with a third dimension which is a
function of the pixel’s color. To do this, we introduce a new node for
deep learning that performs a data-dependent lookup. This enables
the so-called slicing operation, which reconstructs an output image
at full image resolution from the 3D bilateral grid by considering
each pixel’s input color in addition to its x ;y location. 2) We follow
previous work which has observed that it is often simpler to pre-
dict the transformation from input to output rather than predicting
the output directly e.g., [Chen et al. 2016; Gharbi et al. 2015; Shih
et al. 2013]. This is why our architecture is designed to learn, as
an intermediate representation, a local a�ne color transformation
that will be applied to the input through a new multiplicative node.
3) While most of our learning and inference is performed at low
resolution, the loss function used during training is evaluated at
full resolution, which causes the low-resolution transformations we
learn to be directly optimized for their impact on high-resolution
images.

Taken together, these three strategies (slicing, a�ne color trans-
form, and full-resolution loss) allow us to perform the bulk of our
processing at a low resolution (thereby saving substantial compute
cost) yet reproduce the high-frequency behavior of the reference
operator.

We demonstrate the expressiveness of our model on a bench-
mark of 7 applications including: approximating published image

�lters [Aubry et al. 2014; Hasino� et al. 2016], reverse-engineering
black-box Photoshop actions, and learning the retouching style of
photographers [Bychkovsky et al. 2011] from a set of manually cor-
rected photographs. Our technique produces output whose quality
is comparable to or better than previous work, while being more
widely applicable by not requiring some reference implementation
of the image operation being approximated, being end-to-end learn-
able from input/output image pairs, and running in real-time on
mobile hardware. The forward pass of our network takes 14 ms to
process a full screen resolution 1920� 1080 image on a Google Pixel
phone, thereby enabling real-time view�nder e�ects at 50 Hz.

2 RELATED WORK
Though image enhancement algorithms have been the focus of a
great deal of research, most sophisticated algorithms are too expen-
sive to be evaluated quickly on mobile devices, which is where the
vast majority of digital images are captured and processed. Because
of this, previous work has identi�ed speci�c critical operations and
developed novel algorithms to accelerate them. For instance, Farb-
man et al. [2011] introduced convolution pyramids to accelerate
linear translation-invariant �lters. Similarly, many approaches have
been proposed to accelerate bilateral �ltering, due to the ubiquity of
edge-aware image processing [Adams et al. 2010; Chen et al. 2007;
Paris and Durand 2006; Tomasi and Manduchi 1998].

One way to accelerate an operator is to simply apply it at low res-
olution and upsample the result. A naïve upsampling will generally
lead to an unacceptably blurry output, but this issue can often be
ameliorated by using a more sophisticated upsampling technique
that respects the edges of the original image. Joint bilateral upsam-
pling [Kopf et al. 2007] does this by using a bilateral �lter on a
high-resolution guidance map to produce a piecewise-smooth edge-
aware upsampling. Bilateral space optimization [Barron et al. 2015;
Barron and Poole 2016] builds upon this idea by solving a compact
optimization problem inside a bilateral grid, producing upsampled
results which are maximally smooth.

Gharbi et al. [2015] focus on learning the transformation from
input to output instead of the output itself. They approximate a
large class of complex, spatially-varying operators with a collection
of simple local models—a transform recipe—that is tailored to a given
input/output pair. The task of computing the operator and �tting
the recipe is o�oaded to the cloud while the mobile device need
only apply the recipe, thereby saving time and energy. Similarly,
Chen et al. [2016] approximate an image operator with a grid of local
a�ne models in bilateral space, the parameters of which are �t to an
input/output pair in a manner resembling the guided �lter [He et al.
2013]. By performing this model-�tting on a low-resolution image
pair, this technique enables real-time on-device computation. We
build upon this bilateral space representation, but rather than �tting
a model to approximate a single instance of an operator from a pair of
images, we construct a rich CNN-like model that is trained to apply
the operator to any unseen input. This bypasses the need for the
original operator at runtime and opens up the opportunity to learn
non-algorithmic transformations (i.e., hand-adjusted input/output
image pairs). This also allows us to optimize the a�ne coe�cients
to model the operator running at full resolution, which is important
for �lters that vary with scale (Figure 9).

ACM Transactions on Graphics, Vol. 36, No. 4, Article 118. Publication date: July 2017.



Deep Bilateral Learning for Real-Time Image Enhancement • 118:3

Neural networks for image processing. Recently, deep convolu-
tional networks have achieved signi�cant progress on low-level
vision and image processing tasks such as depth estimation [Eigen
et al. 2014], optical �ow [Ilg et al. 2016], super-resolution [Dong
et al. 2014], demosaicking and denoising [Gharbi et al. 2016; Zhang
et al. 2016], image matting [Shen et al. 2016], colorization [Iizuka
et al. 2016], and general image-to-image “translation” tasks [Isola
et al. 2016]. Recent work has even explored learning deep networks
within a bilateral grid [Jampani et al. 2016] though this work does
not address our task of learning image transformations in that space,
and instead focuses on classi�cation and semantic segmentation.
Some architectures have been trained to approximate a general
class of operators. Xu et al. [2015] develop a three-layer network
in the gradient domain to accelerate edge-aware smoothing �lters.
Liu et al. [2016] propose an architecture to learn recursive �lters
for denoising, image-smoothing, inpainting and color interpolation.
They jointly train a collection of recursive networks and a convo-
lutional network to predict image-dependent propagation weights.
While some of this work can process low-resolution images on a
desktop GPU at interactive rates, they remain too slow for our appli-
cation: real-time processing of high-resolution images on a mobile
device.

Automatic photo editing. Our model can be trained to automati-
cally correct photographs from input/output image pairs provided
by a human retoucher. This is the task introduced by Bychkovsky et al.
[2011], who estimate global brightness/contrast adjustments that
characterize the personal style of 5 trained photographers. They
train a regression model with handcrafted features that capture both
low-level information and semantic content (e.g., faces) on a dataset
of 5000 raw images. Hwang et al. [2012] approach the problem with
a coarse-to-�ne search for the best-matching scenes that takes more
than a minute for a 500�333 image. Kaufman et al. [2012] learn local
color and contrast manipulations from hard-coded features (faces,
blue skies, clouds, underexposed areas), running over 2 minutes for
a VGA image. More recently, Yan et al. [2016] use a compact pixel-
wise neural network and handcrafted features. Their network takes
1:5 s to process a 1 megapixel image (on top of the time needed for
object detection, dense image segmentation, and scene recognition
used in their features). Our model can learn similar global tonal ad-
justments and generalizes to more complex e�ects, including color
corrections and local edits, in addition to being much faster.

3 OUR ARCHITECTURE
We propose a new convolutional network architecture that can be
trained to perform fast image enhancement (Figure 2). Our model
is designed to be expressive, preserve edges, and require limited
computation at full resolution. It is fully end-to-end trainable and
runs in real-time at 1080p on a modern smartphone.

We perform most of the inference on a low-resolution copy Ĩ of the
input I in the low-res stream (Fig. 2, top), which ultimately predicts
local a�ne transforms in a representation similar to the bilateral
grid [Chen et al. 2016]. In our experience, image enhancements often
depend not only on local image features but also on global image
characteristics such as histograms, average intensity, or even scene
category. Therefore, our low-res stream is further split into a local

path and a global path. Our architecture then fuses these two paths
to yield the �nal coe�cients representing the a�ne transforms.

The high-res stream (Fig. 2, bottom) works at full resolution and
performs minimal computation but has the critical role of captur-
ing high-frequency e�ects and preserving edges when needed. For
this purpose, we introduce a slicing node inspired by bilateral grid
processing [Chen et al. 2007; Paris and Durand 2006]. This node per-
forms data-dependent lookups in the low-resolution grid of a�ne
coe�cients based on a learned guidance map. Given high-resolution
a�ne coe�cients obtained by slicing into the grid with the full-
resolution guidance map, we apply local color transforms to each
pixel to produce the �nal output O. At training time, we minimize
our loss function at full resolution. This means that the low-res
stream, which only processes heavily downsampled data, still learns
intermediate features and a�ne coe�cients that can reproduce
high-frequency e�ects.

As a �rst approximation, one can think of our work as allevi-
ating the need for the reference �lter at runtime in Chen et al.’s
Bilateral Guided Upsampling [2016]. In a sense, we seek to predict
the a�ne color transform coe�cients in the bilateral grid given
a low-resolution version of the image. However, there are several
key elements that go beyond this. First, the downsampling into the
bilateral grid is learned. Second, the guidance image is also learned
and not restricted to luminance. Finally, we apply the loss function
not on the a�ne coe�cients, but on the �nal image at full resolu-
tion, which allows us to capture high-frequency e�ects and handle
operators that are not scale-invariant (Figure 9). We illustrate the
role of each component of our architecture with an ablation study
in Figures 3, 4, 5 and 7.

3.1 Low-resolution prediction of bilateral coe�icients
The input Ĩ to the low-res stream has a �xed resolution 256 �
256. It is �rst processed by a stack of strided convolutional layers
(Si )i=1; :::;nS to extract low-level features and reduce the spatial reso-
lution. Then, in a design inspired by Iizuka et al. [2016], the last low-
level features are processed by two asymmetric paths: the �rst path
(Li )i=1; :::;nL is fully convolutional [Long et al. 2015] and specializes
in learning local features that propagate image data while retaining
spatial information. The second path (Gi )i=1; :::;nG uses both con-
volutional and fully-connected layers to learn a �xed-size vector
of global features (e.g. high-level scene category, indoor/outdoor,
etc.) with a receptive �eld covering the entire low-resolution im-
age Ĩ. The outputs of the two paths, GnG and LnL , are then fused
into a common set of features F . A pointwise linear layer outputs a
�nal array A from the fused streams. We interpret this array as a
bilateral grid of a�ne coe�cients (Section 3.2). Since we produce a
3D bilateral grid from a 2D image in a content-dependent fashion,
we can view the low-res stream as implementing a form of learned
splatting.

3.1.1 Low-level features. We �rst process the low-resolution
image S0 := Ĩ with a stack of standard strided convolutional layers
with stride s = 2 (Figure 2):

Si
c [x ;y] = σ*.

,
bi

c +
X

x 0;y0;c 0
wi

cc 0
�
x 0;y0

�
Si�1

c 0
�
sx + x 0; sy + y0

�+/
-

(1)

ACM Transactions on Graphics, Vol. 36, No. 4, Article 118. Publication date: July 2017.











http://designbump.com/photoshop-actions-for-instagram-effects/


Deep Bilateral Learning for Real-Time Image Enhancement • 118:9

Table 3. Mean L2 error in La*b* space for retouches from the 5 photogra-
phers in the MIT5k dataset (A,B,C,D,E); lower is be�er. Our algorithm is
capable of learning a photographer’s retouching style be�er than previous
work, yet runs orders of magnitudes faster. The comparisons in the first
two groups are evaluated on the dataset from photographer C favored by
previous techniques; see main text for details. In the third group we report
our results on the remaining 4 photographers for completeness. Metrics
taken from previous work [Hwang et al. 2012; Yan et al. 2016] are denoted
by y.

photographer method La*b* L-only

C
random250

ours 7:8 5:5
Yan [2016] 9:9y 5:7y

Bychkovsky [2011] – 5:8y

Hwang [2012] 15:01y –

C
highvar50

ours 7:1 5:2
Yan [2016] 9:9y 8:4y
Bychkovsky [2011] – –
Hwang [2012] 12:03y –

A ours 11:7 9:8
B ours 7:4 5:0
D ours 10:0 7:7
E ours 8:8 6:2

image operator which requires a signi�cant amount of learning and
semantic reasoning. We report mean L2 error in La*b* space (lower
is better) for retouches by the 5 photographers (A,B,C,D,E) in the
MIT “FiveK” dataset, though previous work only presents results
on photographer C [Hwang et al. 2012; Yan et al. 2016]. We use
the “Random 250” and “High Variance 50” dataset splits presented
in [Hwang et al. 2012], which have 250 randomly-chosen and 50
user-weighted images in the test set, respectively.

This is a much more di�cult task, and inconsistencies in the
retouches of photographers has been pointed out previously [Yan
et al. 2016]. For example we found that retoucher B in this dataset
was more self-consistent, and was easier for our network to learn.
Nonetheless, our model, trained separately on each artist’s correc-
tions, consistently predicts reasonable adjustments and outperforms
previous work.

4.3 Performance
We implemented our technique on a Google Pixel phone running
Android 7.1.1. Our implementation processes view�nder-resolution
1920�1080 images in realtime, at 40–50 Hz. We extract 8-bit preview
frames in YUV420 format using the Camera2 API. These images
are downsampled to 256 � 256, converted to �oating point RGB,
then fed into our network. After the network produces its output (a
bilateral grid of a�ne coe�cients), we transfer them to the GPU as
a set of three 3D RGBA textures, where they are sliced and applied
to the full-resolution input to render the �nal processed preview.
Overall throughput is under 20 ms, with 14 ms spent on inference
(CPU), overlapped with 1 ms to upload coe�cients and 18 ms to
render on the GPU. As a point of comparison, running an optimized
implementation [Ragan-Kelley et al. 2012] of the Local Laplacian

U-net, depth 9

U-net, depth 6

reference filter (CPU)
U-net, depth 3

dilated, depth 6
dilated, depth 3

16
32 64

U-net, depth 11
ours 

end-to-end running time (ms, log scale)

Fig. 10. We compare the speed and quality of our algorithm against two
modern network architectures: U-Net (adapted from [Isola et al. 2016]) and
dilated convolutions [Yu and Koltun 2015]. The runtimes were averaged over
20 iterations, processing a 4 megapixel image on a desktop CPU. The PSNR
numbers refer to the Local Laplacian task. Given an insu�icient depth, U-Net
and dilated convolutions fail to capture the large scale e�ects of the Local
Laplacian filter, leading to low PSNRs. Competitive architectures run over
100 times slower than ours, and use orders of magnitude more memory. Our
model’s performance is displayed for a range of parameters. The version
we used to produce all the results is highlighted in red. See Figure 11 for
details on the speed/quality trade-o� of our model.

net forward pass (ms)

, twice as many features

ours

8x8

16x16

32x32

Fig. 11. We show PSNRs for the Local Laplacian task and the computation
time required to predict the bilateral coe�icients with several se�ings of our
model’s parameters. Each curve represent a grid depth d . For each curve the
grid’s spatial resolution varies in f8; 16; 32g. The reference model we used to
produced all the results is highlighted with a square marker. Unsurprisingly,
models with larger grid depth perform be�er (green). Doubling the number
of intermediate features also provides a 0.5 dB improvement (red curve).
Runtimes were measured on an Intel Core i7-5930K.

�lter [Paris et al. 2011] on the same device takes over 200 ms. Run-
ning the same �lter at the reduced 256�256 resolution and applying
Bilateral Guided Upsampling [Chen et al. 2016] with the same grid
dimensions takes 17 ms (compared to our 14 ms) but loses some of
the �lter’s intended e�ect (Figure 9). Our processing time scales

ACM Transactions on Graphics, Vol. 36, No. 4, Article 118. Publication date: July 2017.





http://tensorflow.org/



	Abstract
	1 Introduction
	2 Related Work
	3 Our architecture
	3.1 Low-resolution prediction of bilateral coefficients
	3.2 Image features as a bilateral grid
	3.3 Upsampling with a trainable slicing layer
	3.4 Assembling the full-resolution output
	3.5 Training procedure

	4 Results
	4.1 Reproducing image operators
	4.2 Learning from human annotations
	4.3 Performance
	4.4 Discussion and limitations

	5 Conclusion
	Acknowledgments
	References

